Abstract

A methodology is described for computing the quasi-static effective permittivity of a two-dimensional (2-D) or three-dimensional (3-D) lattice of dielectric particles. The particles in this composite material may have complicated shapes. This methodology uses a moment method based technique to determine the electric dipole moments of the particles immersed in a uniform electric field. The effective permittivity is then obtained using an appropriate macroscopic model. With this methodology, the mutual interaction between particles can be accounted for accurately. The computed effective permittivity for round cylinders and spheres suspended in a host are compared with our previous T-matrix method results as well as the Maxwell Garnett (MG) formula predictions. Three additional examples involving square (2-D), rounded square (2-D), and spherical (3-D) dielectric inclusions are also given, illustrating the shape effects on the computation of the quasi-static effective permittivity. While the square- and cubic-shaped particles can possess great mutual interaction, surprisingly their effective permittivity is well predicted for all volume fractions by the simple MG formula in both 2-D and 3-D problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.