Abstract
A new plane shape-free multi-node singular hybrid stress-function (HS-F) element with drilling degrees of freedom, which can accurately capture the stress intensity factors at the crack tips, is developed. Then, a quasi-static 2D crack propagation modeling strategy is established by combination of the new singular element and a shape-free 4-node HS-F plane element with drilling degrees of freedom proposed recently. Only simple remeshing with an unstructured mesh is needed for each simulation step. Numerical results show that the proposed scheme is an effective and robust technique for dealing with the crack propagation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.