Abstract

We study of a quasistatic frictional contact problem between two thermo-electroelastic bodies with adhesion. The temperature of the materials caused by elastic deformations. The contact is modelled with a version of normal compliance condition and the associated Coulomb’s law of friction in which the adhesion of contact surfaces is taken into account. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence anduniqueness result on parabolic equalities, differential equations and fixed point arguments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.