Abstract

The method of iterated conformal maps is developed for quasistatic fracture of brittle materials, for all modes of fracture. Previous theory, that was relevant for mode III only, is extended here to modes I and II. The latter require the solution of the bi-Laplace rather than the Laplace equation. For all cases we can consider quenched randomness in the brittle material itself, as well as randomness in the succession of fracture events. While mode III calls for the advance (in time) of one analytic function, modes I and II call for the advance of two analytic functions. This fundamental difference creates different stress distribution around the cracks. As a result the geometric characteristics of the cracks differ, putting mode III in a different class compared to modes I and II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.