Abstract

The experimental and numerical quasi-static crushing responses of extruded closed cell polystyrene foam-filled thin-walled aluminum tubes were investigated. The numerical crash analysis of empty and foam-filled tubes was performed using the explicit finite element code PAM-CRASH™. Satisfactory agreements were generally achieved between the finite element model and experimental deformed shapes, load–displacements, fold lengths and specific energy absorptions. The model and experiments have also highlighted the several effects of foam filling on the crushing of thin-walled tubes. The energy absorptions in foam-filled tubes were further shown to be higher than the sum of the energy absorptions of empty tube (alone) and filler (alone).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call