Abstract

Previous studies have demonstrated that the failure mechanism and energy absorption capacity of expanded metal tubes strongly depends on the orientation of the cells. This paper presents an experimental investigation on the collapse of concentric expanded metal tubes subjected to quasi-static axial compression. Square tubes with two different cell orientations are tested to failure, and the energy absorption characteristics are calculated. The results show that the combination of cell geometries lead to a complex buckling mode interaction, which enhances the energy absorption capacity of expanded metal tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.