Abstract

We study the influence of three laser beams on the center-of-mass motion of cold atoms with internal energy levels in a tripod configuration. We show that, as for electrons in graphene, the atomic motion can be equivalent to the dynamics of ultrarelativistic two-component Dirac fermions. We propose and analyze an experimental setup for observing such a quasirelativistic motion of ultracold atoms. We demonstrate that the atoms can experience negative refraction and focusing by Veselago-type lenses. We also show how the chiral nature of the atomic motion manifests itself as an oscillation of the atomic internal state population, which depends strongly on the direction of the center-of-mass motion. For certain directions an atom remains in its initial state, whereas for other directions the populations undergo oscillations between a pair of internal states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.