Abstract
Quasi-P*-maps and P(τ, α, β)-maps defined in this paper are two large classes of nonlinear mappings which are broad enough to include P*-maps as special cases. It is of interest that the class of quasi-P*-maps also encompasses quasimonotone maps (in particular, pseudomonotone maps) as special cases. Under a strict feasibility condition, it is shown that the nonlinear complementarity problem has a solution if the function is a nonlinear quasi-P*-map or P(τ, α, β)-map. This result generalizes a classical Karamardian existence theorem and a recent result concerning quasimonotone maps established by Hadjisawas and Schaible, but restricted to complementarity problems. A new existence result under an exceptional regularity condition is also established. Our method is based on the concept of exceptional family of elements for a continuous function, which is a powerful tool for investigating the solvability of complementarity problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.