Abstract

Using the Lax matrix and elliptic variables, we decompose the discrete Chen-Lee-Liu hierarchy into solvable ordinary differential equations. Based on the theory of the algebraic curve, we straighten the continuous and discrete flows related to the discrete Chen-Lee-Liu hierarchy in Abel-Jacobi coordinates. We introduce the meromorphic function ϕ, Baker-Akhiezer vector \(\bar \psi \), and hyperelliptic curve ɛN according to whose asymptotic properties and the algebro-geometric characters we construct quasiperiodic solutions of the discrete Chen-Lee-Liu hierarchy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.