Abstract

In this paper we analyze the behavior of the solution of the dissipative Boussinesq systems $$\partial_t u = -\partial_x v - \alpha \partial_{xxx} v +\beta \partial_{xxt} u - \partial_x(uv)$$ $$\partial_t v = - \partial_x u +c \partial_{xxx} u + \beta \partial_{xxt} v - v \partial_x v$$ where α, β, c > 0 are parameters. Those systems model two-dimensional small amplitude long wavelength water waves. For α ≤ 1, this equation is ill-posed and most initial conditions do not lead to solutions. Nevertheless, we show that, for almost every β, c and almost every α ≤ 1, it admits solutions that are quasiperiodic in time. The proof uses the fact that the equation leaves invariant a smooth center manifold and for the restriction of the Boussinesq system to the center manifold, uses arguments of classical perturbation theory by considering the Hamiltonian formulation of the problem and studying the Birkhoff normal form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.