Abstract

An analysis is given of the dynamic of a one-degree-of-freedom oscillator with quadratic and cubic nonlinearities subjected to parametric and external excitations having incommensurate frequencies. A new method is given for constructing an asymptotic expansion of the quasi-periodic solutions. The generalized averaging method is first applied to reduce the original quasi-periodically driven system to a periodically driven one. This method can be viewed as an adaptation to quasi-periodic systems of the technique developed by Bogolioubov and Mitropolsky for periodically driven ones. To approximate the periodic solutions of the reduced periodically driven system, corresponding to the quasi-periodic solution of the original one, multiple-scale perturbation is applied in a second step. These periodic solutions are obtained by determining the steady-state response of the resulting autonomous amplitude-phase differential system. To study the onset of the chaotic dynamic of the original system, the Melnikov method is applied to the reduced periodically driven one. We also investigate the possibility of achieving a suitable system for the control of chaos by introducing a third harmonic parametric component into the cubic term of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.