Abstract

Testing gravity theories combining (massive and massless) scalar & electrodynamic fields become the most important issue in relativistic astrophysics using data from, black hole observations. In the present work, we first show a spherically symmetric black hole solution in general relativity coupling to generic-type nonlinear electrodynamics (NED) together with the quintessential field. We also obtain possible values for the parameters of the quintessential field and NED charge in the black hole environment for different values of degree of nonlinearity. Also, event horizon properties and scalar invariants of the black hole spacetime are studied. We investigate the equatorial motion of test particles around the regular-Kiselev black holes and study the combined effects of quintessential field and the NED charge of the black hole on particle angular momentum together with its energy at their circular orbits as well as their innermost circular stable orbits (ISCOs) and compared the obtained results with Reissner-Nordström black hole (RN BH) case. Moreover, we study particle oscillations along the orbits above than ISCO and applications to quasiperiodic oscillations (QPOs) where we obtain constrain values for the quintessential parameter and black hole mass charge parameters using observational QPO data from microquasars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.