Abstract
We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasiperiodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this "linearization" (or conjugacy) from knowledge of a single quasiperiodic trajectory. In our computations of rotation rates of the almost periodic orbits and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory, and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian Problem: determining the characteristics of a quasiperiodic set from a trajectory. Our computation of rotation rates and Fourier coefficients depends on the very high speed of our computational method "the weighted Birkhoff average".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.