Abstract

The nature of the many-body localization (MBL) transition and even the existence of the MBL phase in random many-body quantum systems have been actively debated in recent years. In spatial dimension $d>1$, there is some consensus that the MBL phase is unstable to rare thermal inclusions that can lead to an avalanche that thermalizes the whole system. In this note, we explore the possibility of MBL in quasiperiodic systems in dimension $d>1$. We argue that (i) the MBL phase is stable at strong enough quasiperiodic modulations for $d = 2$, and (ii) the possibility of an avalanche strongly constrains the finite-size scaling behavior of the MBL transition. We present a suggestive construction that MBL is unstable for $d \geq 3$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.