Abstract
We present a short review of the experimental observations and mechanisms related to the generation of quasipatterns and superlattices by the Faraday instability with two-frequency forcing. We show how two-frequency forcing makes possible triad interactions that generate hexagonal patterns, twelvefold quasipatterns or superlattices that consist of two hexagonal patterns rotated by an angle α relative to each other. We then consider which patterns could be observed when α does not belong to the set of prescribed values that give rise to periodic superlattices. Using the Swift–Hohenberg equation as a model, we find that quasipattern solutions exist for nearly all values of α. However, these quasipatterns have not been observed in experiments with the Faraday instability for α≠π/6. We discuss possible reasons and mention a simpler framework that could give some hint about this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.