Abstract
A resonantly driven bosonic Josephson junction supports stable collective excitations, or quasiparticles, which constitute analogs of the Trojan wave packets previously explored with Rydberg atoms in strong microwave fields. We predict a quantum beating effect between such symmetryrelated many-body Trojan states taking place on time scales which are long in comparison with the driving period. Within a mean-field approximation, this quantum beating can be regarded as a manifestation of dynamical tunneling. On the full N-particle level, the beating phenomenon leads to an experimentally feasible, robust strategy for probing highly entangled mesoscopic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.