Abstract

In this paper, we study the quasiparticle scattering interference phenomenon in the presence of a single impurity within the renormalized Hubbard model. By calculating the energy and momentum dependence of the Fourier-transformed local density of states in the full Brillouin zone, we can qualitatively describe the main features of the quasiparticle scattering interference phenomenon in cuprate superconductors using a single point-like impurity. In particular, we show that with increasing energy, the position of the peak along the nodal ([0, 0] → [π, π]) direction moves steadily to a large momentum region, while the position of the peak along the antinodal ([0, 0] → [π, 0]) direction moves toward the center of the Brillouin zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.