Abstract

Drumhead surface states that link together loops of nodal lines arise in Dirac nodal-line semimetals as a consequence of the topologically non-trivial band crossings. We used low-temperature scanning tunneling microscopy and Fourier-transformed scanning tunneling spectroscopy to investigate the quasiparticle interference (QPI) properties of ZrSiTe. Our results show two scattering signals across the drumhead state resolving the energy-momentum relationship through the occupied and unoccupied energy ranges it is predicted to span. Observation of this drumhead state is in contrast to previous studies on ZrSiS and ZrSiSe, where the QPI was dominated by topologically trivial bulk bands and surface states. Furthermore, we observe a near $\mathbf{k} \rightarrow -\mathbf{k}$ scattering process across the $\Gamma$-point, enabled by scattering between the spin-split drumhead bands in this material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call