Abstract

We present a first-principles study of the effects of many-electron interactions on the optical properties of single-walled carbon nanotubes. Motivated by recent experiments, we have carried out ab initio calculations on the single-walled carbon nanotubes (3, 3), (5, 0) and (8, 0). The calculations are based on a many-body Green’s function approach in which both the quasiparticle (single-particle) excitation spectrum and the optical (electron–hole excitation) spectrum are determined. We show that the optical spectrum of both the semiconducting and metallic nanotubes studied exhibits important excitonic effects due to their quasi-one-dimensional nature. Binding energies for excitonic states range from zero for the metallic (5, 0) tube to nearly 1 eV for the semiconducting (8, 0) tube. Moreover, the metallic (3, 3) tube possesses exciton states bound by nearly 100 meV. Our calculated spectra explain quantitatively the observed features found in the measured spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.