Abstract
We study the ground-state topology and quasiparticle properties in bosonic Mott insulators with two- dimensional spin-orbit couplings in cold atomic optical lattices. We show that the many-body Chern and spin-Chern number can be expressed as an integral of the quasihole Berry curvatures over the Brillouin zone. Using a strong-coupling perturbation theory, for an experimentally feasible spin-orbit coupling, we compute the Berry curvature and the spin Chern number and find that these quantities can be generated purely by interactions. We also compute the quasiparticle dispersions, spectral weights, and the quasimomentum space distribution of particle and spin density, which can be accessed in cold-atom experiments and used to deduce the Berry curvature and Chern numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.