Abstract

We propose an approach to reliably calculate band offsets at heterointerfaces. It is based on standard density-functional theory, but overcomes the band-gap problem by including quasiparticle effects at the level of $GW$ theory. Quasiparticle corrections are extracted from a heterojunction superlattice by translating the experimental concept of marker levels into a theoretical approach. The proposed scheme allows one to exploit the robust prediction of relative band positions within $GW$ and therefore does not rely on the transferability of absolute $GW$ corrections for the respective bulk materials. For zinc-blende GaN/AlN (001), we obtain a natural band offset of 0.55 eV, compared to 0.39 eV at the local-density approximation level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.