Abstract
The cubic, tetragonal, and orthorhombic phase of potassium niobate (${\mathrm{KNbO}}_{3}$) are studied based on density-functional theory. Starting from the relaxed atomic geometries, we analyze the influence of self-energy corrections on the electronic band structure within the $GW$ approximation. We find that quasiparticle shifts widen the direct (indirect) band gap by 1.21 (1.44), 1.58 (1.55), and 1.67 (1.64) eV for the cubic, tetragonal, and orthorhombic phase, respectively. By solving the Bethe-Salpeter equation, we obtain the linear dielectric function with excitonic and local-field effects, which turn out to be essential for good agreement with experimental data. From our results, we extract an exciton binding energy of 0.6, 0.5, and 0.5 eV for the cubic, tetragonal, and orthorhombic phase, respectively. Furthermore, we investigate the nonlinear second-harmonic generation (SHG) both theoretically and experimentally. The frequency-dependent second-order polarization tensor of orthorhombic ${\mathrm{KNbO}}_{3}$ is measured for incoming photon energies between 1.2 and 1.6 eV. In addition, calculations within the independent-(quasi)particle approximation are performed for the tetragonal and orthorhombic phase. The novel experimental data are in excellent agreement with the quasiparticle calculations and resolve persistent discrepancies between earlier experimental measurements and ab initio results reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.