Abstract

Quasi-orthogonal space-time block codes (QO-STBCs) are a powerful code family designed for more than two transmit antennas. In contrast to their orthogonal counterparts designed for the same number of transmit antennas, QO-STBCs are able to provide full-rate transmission rate. While original QO-STBCs enjoy only a partial diversity, the recently proposed rotated versions of QO-STBCs achieve the maximum diversity order which is equal to the number of transmit antennas. Since QO-STBCs have been originally proposed for frequency-flat fading channels, it is a challenging design problem to apply them over frequency-selective channels. The dispersive nature of such channels results in intersymbol interference which needs to be carefully handled at the receiver. In this paper, we investigate time-domain equalization for QO-STBC, exploiting the embedded quasi-orthogonal structure to design low-complexity receivers. We also present diversity gains for the proposed scheme through pairwise error probability (PEP) derivation and analysis which are further confirmed by Monte Carlo simulations

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.