Abstract
Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a nonstandard discretization of the right-hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressure-robust scheme with low regularity. The numerical analysis applies divergence-free H 1 H^1 -conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a priori error estimates will be presented for the (first-order) nonconforming Crouzeix–Raviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right-hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.