Abstract

We devise variants of classical nonconforming methods for symmetric elliptic problems. These variants differ from the original ones only by transforming discrete test functions into conforming functions before applying the load functional. We derive and discuss conditions on these transformations implying that the ensuing method is quasi-optimal and that its quasi-optimality constant coincides with its stability constant. As applications, we consider the approximation of the Poisson problem with Crouzeix--Raviart elements and higher order counterparts and the approximation of the biharmonic problem with Morley elements. In each case, we construct a computationally feasible transformation and obtain a quasi-optimal method with respect to the piecewise energy norm on a shape regular mesh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.