Abstract

Black hole quasinormal frequencies are complex numbers that encode information on how a black hole relaxes after it has been perturbed and depend on the features of the geometry and on the type of perturbations. On the one hand, the examples studied so far in the literature focused on the case of black hole geometries with singularities in their interior. On the other hand, it is expected that quantum or classical modifications of general relativity may correct the pathological singular behavior of classical black hole solutions. Despite the fact that we do not have at hand a complete theory of quantum gravity, regular black hole solutions can be constructed by coupling gravity to an external form of matter, sometimes modeled by one form or another of nonlinear electrodynamics. It is therefore relevant to compute quasinormal frequencies for these regular solutions and see how differently, from the ordinary ones, regular black holes ring. In this paper, we take a step in this direction and, by computing the quasinormal frequencies, study the quasinormal modes of neutral and charged scalar field perturbations on regular black hole backgrounds in a variety of models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.