Abstract
We study the quasi-normal modes of asymptotically anti-de Sitter black holes in a class of shift-symmetric Horndeski theories where a gravitational scalar is derivatively coupled to the Einstein tensor. The space-time differs from exact Schwarzschild-anti-de Sitter, resulting in a different effective potential for the quasi-normal modes and a different spectrum. We numerically compute this spectrum for a massless test scalar coupled both minimally to the metric, and non-minimally to the gravitational scalar. We find interesting differences from the Schwarzschild-anti-de Sitter black hole found in general relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.