Abstract

One simplified black hole model constructed from a semiclassical analysis of loop quantum gravity (LQG) is called self-dual black hole. This black hole solution depends on a free dimensionless parameter P known as the polymeric parameter and also on the $a_{0}$ area related to the minimum area gap of LQG. In the limit of P and $a_{0}$ going to zero, the usual Schwarzschild-solution is recovered. Here we investigate the quasinormal modes (QNMs) of massless scalar perturbations in the self-dual black hole background. We compute the QN frequencies using the sixth order WKB approximation method and compare them with numerical solutions of the Regge-Wheeler equation. Our results show that as the parameter P grows, the real part of the QN frequencies suffers an initial increase and then starts to decrease while the magnitude of the imaginary one decreases for fixed area gap $a_{0}$. This particular feature means that the damping of scalar perturbations in the self-dual black hole spacetimes are slower, and their oscillations are faster or slower according to the value of P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.