Abstract

We have studied scalar, electromagnetic and gravitational perturbations of the four-dimensional Reissner-Nordstr\"{o}m-like black holes with a \textit{tidal charge} in the Randall-Sundrum braneworld. The quasinormal modes of these scalar, electromagnetic, as well as axial and polar gravitational perturbations, have been studied in both normal and eikonal regimes. Calculations have shown that the black holes on the Randall-Sundrum brane are stable against scalar, electromagnetic and gravitational perturbations. Moreover, we determine the grey body factor, giving transmission and reflection of the scattered waves through the scalar, electromagnetic and gravitational effective potentials. It has been shown that the scalar perturbative fields are the most favorite to the reflected as compared to the latter. With increasing value of the tidal charge ability of the all perturbative potentials to reflect the waves decreases. Our calculations in low- and high-frequency regimes have shown that black holes on the braneworld always have a bigger absorption cross section of massless scalar waves than the Schwarzschild and standard Reissner-Nordstr\"{o}m black holes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.