Abstract
For a spacelike 2-surface in spacetime, we propose a new definition of quasi-local angular momentum and quasi-local center of mass, as an element in the dual space of the Lie algebra of the Lorentz group. Together with previous defined quasi-local energy-momentum, this completes the definition of conserved quantities in general relativity at the quasi-local level. We justify this definition by showing the consistency with the theory of special relativity and expectations on an axially symmetric spacetime. The limits at spatial infinity provide new definitions for total conserved quantities of an isolated system, which do not depend on any asymptotically flat coordinate system or asymptotic Killing field. The new proposal is free of ambiguities found in existing definitions and presents the first definition that precisely describes the dynamics of the Einstein equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.