Abstract
A novel quasilinear turbulent transport model DeKANIS has been constructed founded on the gyrokinetic analysis of JT-60U plasmas. DeKANIS predicts particle and heat fluxes fast with a neural network (NN) based approach and distinguishes diffusive and non-diffusive transport processes. The original model only considered particle transport, but its capability has been extended to cover multi-channel turbulent transport. To solve a set of particle and heat transport equations stably in integrated codes with DeKANIS, the NN model embedded in DeKANIS has been modified. DeKANIS originally determined turbulent saturation levels semi-empirically based on JT-60U experimental data, but now it can also estimate them using a theory-based saturation rule. The new saturation model is still partly connected to experimental data, but it offers the potential for applying DeKANIS independently of the device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.