Abstract
It is rigorously proven under certain assumptions that a quasilinear system with discontinuous right-hand side possesses a unique unpredictable solution. The discontinuous perturbation function on the right-hand side is defined by means of an unpredictable sequence. A Gronwall-Coppel type inequality is utilized to achieve the main result, and the stability of the unpredictable solution is discussed. Examples with exponentially asymptotically stable and unstable unpredictable solutions are provided.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.