Abstract
We study the $L_p$-theory of a class of quasilinear parabolic partial integro-differential equations with nonlinear boundary conditions. The main objective here is to prove existence and uniqueness of local (in time) strong solutions of these problems. Our approach relies on linearization and the contraction mapping principle. To make this work we establish optimal regularity estimates of $L_p$ type for associated linear problems with inhomogeneous boundary data, using here recent results on maximal $L_p$-regularity for abstract parabolic Volterra equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.