Abstract
The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.