Abstract

We study quasi-isometric embeddings of symmetric spaces and non-uniform irreducible lattices in semi-simple higher rank Lie groups. We show that any quasi-isometric embedding between symmetric spaces of the same rank can be decomposed into a product of quasi-isometric embeddings into irreducible symmetric spaces. We thus extend earlier rigidity results about quasi-isometric embeddings to the setting of semi-simple Lie groups. We also present some examples when the rigidity does not hold, including first examples in which every flat is mapped into multiple flats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.