Abstract

We present a new family of compactly supported and symmetric biorthogonal wavelet systems. Each refinement mask in this family has tension parameter ?. When ??=?0, it becomes the minimal length biorthogonal Coifman wavelet system (Wei et al., IEEE Trans Image Proc 7:1000---1013, 1998). Choosing ? away from zero, we can get better smoothness of the refinable functions at the expense of slightly larger support. Though the construction of the new biorthogonal wavelet systems, in fact, starts from a new class of quasi-interpolatory subdivision schemes, we find that the refinement masks accidently coincide with the ones by Cohen et al. (Comm Pure Appl Math 45:485---560, 1992, §6.C) (or Daubechies 1992, §8.3.5), which are designed for the purpose of generating biorthogonal wavelets close to orthonormal cases. However, the corresponding mathematical analysis is yet to be provided. In this study, we highlight the connection between the quasi-interpolatory subdivision schemes and the masks by Cohen, Daubechies and Feauveau, and then we study the fundamental properties of the new biorthogonal wavelet systems such as regularity, stability, linear independence and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.