Abstract
We classify torsion-free real-analytic affine connections on compact oriented real-analytic surfaces which are locally homogeneous on a nontrivial open set, without being locally homogeneous on all of the surface. In particular, we prove that such connections exist. This classification relies on a local result that classifies germs of torsion-free real-analytic affine connections on a neighborhood of the origin in the plane which are quasihomogeneous, in the sense that they are locally homogeneous on an open set containing the origin in its closure, but not locally homogeneous in the neighborhood of the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.