Abstract

Modification of the electronic and crystal structure of zero-layer graphene grown on $6H$-SiC(0001) after Co intercalation is reported. Using a wide range of techniques including angle-resolved photoelectron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, low-energy electron diffraction, we found that zero-layer graphene on SiC transforms into graphene monolayer as a result of cobalt intercalation. The Dirac cone of $\ensuremath{\pi}$ band characteristic of quasi-freestanding graphene is observed. In combination with high-resolution transmission electron microscopy and atomic force microscopy data, we conclude that ultrathin silicide $\mathrm{CoSi}\text{/}{\mathrm{CoSi}}_{2}$ structure is formed between graphene and SiC substrate. Investigation of magnetic properties reveals ferromagnetic behavior with open hysteresis loop. The results of this work are the basis for further implementation of magneto-spin-orbit graphene on a semiconducting substrate and are important for the future application of such graphene in spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.