Abstract

Unusual quasi-fivefold symmetric electron diffraction patterns are observed for silicon thin films grown by plasma-enhanced chemical vapour deposition and containing oxygen and carbon impurities in the range of 0.3–5.5%. These films were grown on crystalline (100) silicon wafers using a liquid precursor, hexamethyldisiloxane (HMDSO), mixed with silane, hydrogen and diborane diluted in argon. The occurrence of this quasi-fivefold symmetry is explained by multiple twinning and imperfect epitaxy. A quantitative method performed on the diffraction patterns is developed to evaluate the number of twin operations. This method is also used to discriminate twin positions from random microcrystalline ones in the diffraction patterns and thus to estimate their respective ratios for different growth conditions. Quite remarkably, the random microcrystalline part remains in the range of a few per cent and the diffracted intensities are the sum of two main contributions: multiple (micro-) twinned and amorphous. Increasing the amount of HMDSO decreases the microtwinned part directly to the benefit of the amorphous part with no significant microcrystalline phase. The causes of twinning are presented and discussed by comparing the observations with the literature; dynamical considerations where the system tends to align {111} planes with the growth direction would explain multiple twinning and, in turn, the fivefold symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.