Abstract

A systematic study of the quasi-Fermi level pinning in various interband cascade lasers (ICLs) is reported. These ICLs, with either type-II or type-I quantum well active regions, cover the mid-infrared wavelength range from 3 to 6 μm and can operate in continuous wave (cw) at room temperatures and above. It was found that the quasi-Fermi level can be pinned in many ICLs over a wide range of temperature, which is associated with an observed drop of differential resistance at threshold. For the first time, the quasi-Fermi level pinning was demonstrated in ICLs at room temperature. The temperature dependence of the quasi-Fermi level pinning in ICLs was also examined. A pinning factor is introduced to evaluate how well the quasi-Fermi level is pinned in ICLs with different configurations and lasing wavelengths. Also, it was found that the quasi-Fermi level pinning disappeared in some ICLs where an obvious drop of differential resistance could not be observed at the threshold. Furthermore, the quasi-Fermi level pinning was found to be correlated to the doping concentration in electron injectors in ICLs. Possible mechanisms and implications related to the quasiFermi level pinning are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call