Abstract
AbstractAntimony sulfide (Sb2S3) as a wide‐bandgap, nontoxic, and stable photovoltaic material reveals great potential for the uppermost cells in Si‐based tandem cell stacks. Sb2S3 solar cells with a compatible process, acceptable cost, and high efficiency therefore become the mandatory prerequisites to match silicon bottom cells. The performance of vacuum processed Sb2S3 device is pinned by bulk and interfacial recombination. Herein, a thermally treated TiO2 buffer layer induces quasiepitaxial growth of vertical orientation Sb2S3 absorber overcoming interface defects and absorber transport loss. Such novel growth could pronouncedly improve the open‐circuit voltage (Voc) due to the superior interface quality and intraribbon transport. The epitaxial rough Sb2S3 surface shows a texturized‐like morphology. It is optimized by tuning the grain sizes to form strong light trapping effect, which further enhances the short‐circuit current density (Jsc) with a 16% improvement. The final optimal device with high stability obtains a power conversion efficiency of 5.4%, which is the best efficiency for full‐inorganic Sb2S3 solar cells. The present developed quasiepitaxy strategy supports a superior interface, vertical orientation, and surface light trapping effect, which provides a new perspective for efficient noncubic material thin film solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.