Abstract

A serial time-division multiplexing optical fiber sensing network with a large multiplexing capacity, which is based on identical ultraweak fiber Bragg gratings (FBGs) and self-heterodyne detection technique, is proposed. An experimental system, which has 10 identical ultraweak FBGs with the same Bragg wavelength of 1550 nm, reflectivity of − 36 dB , and bandwidth of 0.1 nm, is set up to investigate the performance of the proposed scheme. The spectra of 10 ultraweak FBGs are resolved with a high accuracy, and the wavelength–temperature sensitivity and temperature resolution of the system are 10.5 pm /° C , 0.09°C, respectively. A self-heterodyne detection technique is adopted to increase the sensitivity of the receiver, which makes it possible to multiplex over 1000 FBGs along a single optical fiber. Theoretical analyses demonstrate that this sensing scheme can effectively increase the multiplexing capacity and measurement accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call