Abstract

A quasidegenerate perturbation theory based on multiconfigurational self-consistent-field (MCSCF) reference functions is derived. The perturbation theory derived here is for multistate, where several MCSCF functions obtained by the state-averaged MCSCF method are used as the reference and an effective Hamiltonian is constructed by perturbation calculation. The energies of states interested in are obtained simultaneously by diagonalization of the effective Hamiltonian. An explicit formula of the effective Hamiltonian through second order is derived as well as general formalism, and is applied to calculate potential curves of the system H2, Be–H2, CO, NO, BN, and LiF. The results agree well with those of full configuration interaction or multireference single and double excitation configuration interaction methods for both the ground and the excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.