Abstract

Motivated by recent experimental findings, we investigate the possible occurrence and characteristics of quasicrystalline order in two-dimensional mixtures of point dipoles with two sorts of dipole moments. Despite the fact that the dipolar interaction potential does not exhibit an intrinsic length scale and cannot be tuned a priori to support the formation of quasicrystalline order, we find that configurations with long--range quasicrystallinity yield minima in the potential energy surface of the many particle system. These configurations emanate from an ideal or perturbed ideal decoration of a binary tiling by steepest descent relaxation. Ground state energy calculations of alternative ordered states and parallel tempering Monte-Carlo simulations reveal that the quasicrystalline configurations do not correspond to a thermodynamically stable state. On the other hand, steepest descent relaxations and conventional Monte-Carlo simulations suggest that they are rather robust against fluctuations. Local quasicrystalline order in the disordered equilibrium states can be strong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.