Abstract

We study the electronic structure of quasicrystals composed of incommensurate stacks of atomic layers. We consider two systems: a pair of square lattices with a relative twist angle of $\theta=45^\circ$ and a pair of hexagonal lattices with a relative twist angle of $\theta=30^\circ$, with various interlayer interaction strengths. This constitutes every two-dimensional bilayer quasicrystal system. We investigate the resonant coupling governing the quasicrystalline order in each quasicrystal symmetry, and calculate the quasi-band dispersion. The resonant interaction emerges in bilayer quasicrystals if all the dominant interlayer interactions occur between the atomic orbitals that have the same magnetic quantum number. Thus, not only the quasicrystal composed of the widely studied graphene, but also those composed of transition metal dichalcogenides will exhibit the quasicrystalline states. We find that some quasicrystalline states, which are usually obscured by decoupled monolayer states, are more prominent, i.e., "exposed", in the systems with strong interlayer interaction. We also show that we can switch the states between quasicrystalline configuration and its layer components, by turning on and off the interlayer symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.