Abstract

Onset plasticity of metallic nano-lines or nano-beams is of considerable scientific and technological interest in micro-/nano- mechanics and interconnects of patterned lines in electronic devices, where capability of resistance to deformation is important. In this study, a multiscale quasicontinuum (QC) method was used to explore such an issue in a nano-scale copper (Cu) line protruding from a relatively large single crystal Cu substrate during compression. The results show that the yield stress of a rectangular beam on the substrate can be greatly reduced compared with that of a flat surface of the same area. For the rectangular line, the aspect ratio (width/height) affects dislocation morphology at the onset plasticity without much change of yield stress. However, for the trapezoidal line, the yield stress decreases with the base angle (α), especially when the α is over 54.7°. As the sidewall orientation changes from 〈100〉 at α = 0°, then to 〈111〉 at α = 54.7° and finally to 〈110〉 at α = 90°, a higher surface energy could enable easier dislocation formation and lower yield stress. Meanwhile, it is found that the interaction between the line and the support substrate also shows a great effect on yield stress. Moreover, although it is possible to open two extra dislocation slip planes inside from the two bottom corners of the Cu line with the α over 54.7°, dislocation nucleation derived from them is only observed at α = 90°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.