Abstract

In transient high-speed scenes such as chemical explosions, magnetic compression, electric explosion, and laser-driven flyer, the target object can accelerate from 0 to tens of km/s in a few nanoseconds. The time-stretched photon Doppler velocimetry uses the time-stretched interferometry to downscale the frequency of the Doppler shift signal in the optical domain, which breaks through the bandwidth limitations of photoelectric detectors and electrical digital to analog converters. A quasi-continuous time-stretched photon Doppler velocimetry (QT-PDV) is proposed in this paper, for the measurement of microsecond high-speed movement events. On the principle of hardware optical path, the velocity signal of the target object is encoded on multiple stretched chirp pulses, avoiding sampling interruptions and trigger condition limitations; in the signal demodulation methods, the error compensation algorithm is used to compensate for the frequency shift signal, which reduces the system error caused by the displacement and increases the effective recording time. This paper adopts the high-power nanosecond laser to drive the metal film to produce a high-speed target, where beat frequency was downscaled to 2.2 GHz from 4.4 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.