Abstract

Abstract In [HOLÁ, Ľ.—HOLÝ, D.: Pointwise convergence of quasicontinuous mappings and Baire spaces, Rocky Mountain J. Math.] a complete answer is given, for a Baire space X, to the question of when the pointwise limit of a sequence of real-valued quasicontinuous functions defined on X is quasicontinuous. In [HOLÁ, Ľ.—HOLÝ, D.: Minimal USCO maps, densely continuous forms and upper semicontinuous functions, Rocky Mountain J. Math. 39 (2009), 545–562], a characterization of minimal USCO maps by quasicontinuous and subcontinuous selections is proved. Continuing these results, we study closed and compact subsets of the space of quasicontinuous functions and minimal USCO maps equipped with the topology of pointwise convergence. We also study conditions under which the closure of the graph of a set-valued mapping which is the pointwise limit of a net of set-valued mappings, is a minimal USCO map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.