Abstract
A quasiplane f(V) is the image of an n-dimensional Euclidean subspace V of RN (1≤n≤N−1) under a quasiconformal map f:RN→RN. We give sufficient conditions in terms of the weak quasisymmetry constant of the underlying map for a quasiplane to be a bi-Lipschitz n-manifold and for a quasiplane to have big pieces of bi-Lipschitz images of Rn. One main novelty of these results is that we analyze quasiplanes in arbitrary codimension N−n. To establish the big pieces criterion, we prove new extension theorems for “almost affine” maps, which are of independent interest. This work is related to investigations by Tukia and Väisälä on extensions of quasisymmetric maps with small distortion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.