Abstract

The Bogoliubov - de Gennes equations are solved for the Coulomb Bose gas describing a fluid of charged bosons at finite temperature. The approach is applicable in the weak coupling regime and the extent of its quantitative usefulness is tested in the three-dimensional fluid, for which diffusion Monte Carlo data are available on the condensate fraction at zero temperature. The one-body density matrix is then evaluated by the same approach for the two-dimensional fluid with e^2/r interactions, to demonstrate the presence of a quasi-condensate from its power-law decay with increasing distance and to evaluate the superfluid fraction as a function of temperature at weak coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.